Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Biomed J ; 45(3): 472-481, 2022 06.
Article in English | MEDLINE | ID: covidwho-1767931

ABSTRACT

BACKGROUND: The impact of COVID-19 on public health has mandated an 'all hands on deck' scientific response. The current clinical study and basic research on COVID-19 are mainly based on existing publications or our knowledge of coronavirus. However, efficiently retrieval of accurate, relevant knowledge on COVID-19 can pose significant challenges for researchers. METHODS: To improve quality in accessing important literature findings, we developed a novel natural language processing (NLP) method to automatically recognize the associations among potential targeted host organ systems, associated clinical manifestations, and pathways. We further validated these associations through clinician experts' evaluations and prioritize candidate drug targets through bioinformatics network analysis. RESULTS: We found that the angiotensin-converting enzyme 2 (ACE2), a receptor that SARS-CoV-2 required for cell entry, is associated with cardiovascular and endocrine organ system and diseases. Furthermore, we found SARS-CoV-2 is associated with some important pathways such as IL-6, TNF-alpha, and IL-1 beta-induced dyslipidemia, which are related to inflammation, lipogenesis, and oxidative stress mechanisms, suggesting potential drug candidates. CONCLUSION: We prioritized the list of therapeutic targets involved in antiviral and immune modulating drugs for experimental validation, rendering it valuable during public health crises marked by stresses on clinical and research capacity. Our automatic intelligence pipeline also contributes to other novel and emerging disease management and treatments in the future.


Subject(s)
COVID-19 , Humans , Knowledge Discovery , Natural Language Processing , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2
2.
IEEE Trans Cybern ; 50(7): 2891-2904, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-251794

ABSTRACT

The coronavirus disease 2019 (COVID-19) breaking out in late December 2019 is gradually being controlled in China, but it is still spreading rapidly in many other countries and regions worldwide. It is urgent to conduct prediction research on the development and spread of the epidemic. In this article, a hybrid artificial-intelligence (AI) model is proposed for COVID-19 prediction. First, as traditional epidemic models treat all individuals with coronavirus as having the same infection rate, an improved susceptible-infected (ISI) model is proposed to estimate the variety of the infection rates for analyzing the transmission laws and development trend. Second, considering the effects of prevention and control measures and the increase of the public's prevention awareness, the natural language processing (NLP) module and the long short-term memory (LSTM) network are embedded into the ISI model to build the hybrid AI model for COVID-19 prediction. The experimental results on the epidemic data of several typical provinces and cities in China show that individuals with coronavirus have a higher infection rate within the third to eighth days after they were infected, which is more in line with the actual transmission laws of the epidemic. Moreover, compared with the traditional epidemic models, the proposed hybrid AI model can significantly reduce the errors of the prediction results and obtain the mean absolute percentage errors (MAPEs) with 0.52%, 0.38%, 0.05%, and 0.86% for the next six days in Wuhan, Beijing, Shanghai, and countrywide, respectively.


Subject(s)
Artificial Intelligence , Betacoronavirus , Coronavirus Infections/epidemiology , Models, Statistical , Pneumonia, Viral/epidemiology , COVID-19 , China/epidemiology , Humans , Natural Language Processing , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL